TRON FUTURE 創 未 來 科 技

2024 Q4

USD \$ 32K+ Back Order

No Chinese capital No foreign corporate capital

Mission

We empower our customers to solve critical problems based on data through fundamental sensor and communication breakthroughs.

Application

- Space SatCom / Remote Sensing
- Defense / Airport / Mine / Oil / Wind Farm Surveillance

Core Tech

Design, Assembly & Testing of Advanced AESA

Core chip design: Radar & SatCom SoC

System Design and Verification: Mechanical & Electrical

Advanced Algorithm Design and Implementation

Expertise

- Miniature phased array systems with proprietary RF/ASIC ICs
- Advanced SatCom and Radar signal processing algorithms
- Cloud-based AI data processing
- Drone swarm & Satellite constellation integration

Turnkey Solution Provider

First Taiwanese Space AESA Production Line

Core Tech Team

CEO Dr. Yu-Jiu Wang Ph.D. in EE, Caltech | A.Prof., NCTU

CTO Dr. Borching Su Ph.D. in EE, Caltech | A.Prof., NTU

Senior VP of Eng. Dr. Ta-Shun Chu Ph.D. in EE, USC | A.Prof., NTHU

Chief Robotics Scientist Dr. Teng-Hu Cheng Ph.D. in ME, UFL | Prof., NYCU

Chief Scientist Dr. Kuan-Neng Chen Ph.D. in EE, MIT | Prof., NYCU

Chief Architect Dr. Pei-Yun Tsai Ph.D. in EE, NTU | Prof., NTU


```
Director of Digital Design
Dr. Kun-Chien Hung
Ph.D. in EE, NCTU
```


Principal Engineer Dr. Chang Heng Wang Ph.D. in EE, UCSD

Board Member

Yu-Jiu Wang, Ph.D.

- CEO of Tron Future
- Associate professor in NCTU

Ta-Shun Chu, Ph.D.

- VP of Tron Future
- Associate professor in NTHU

Bingyi Lin, M.S.

• Chairman/CEO of Arizon

Huang Lee, Ph.D.

• Taiwania Capital, Managing Partner of Tech Fund

Steven Chang, Ph.D.

• CID Capital, Managing Partner

Advisory Board Borching Su, Ph.D. Stanley Chen, Ph.D. **Charity Lin** CTO of Tron Future • Director of Silicon Design Engineering of AMD • VP of Tron Future Associate professor in NTU • Ex-Director of SerDes Design Engineering of Xilinx • Ex-VP of JP. Morgan Scott Chen, Ph.D. Yu-Hsin Wang, Ph.D. **Carol Chang** • Director of Engineering of Meta CMO of Leltek CFO of Tron Future • Ex-CEO of Grindr Ex-Senior Researcher of ITRI

мін CONSORTIUM

Mobility In Harmony

Business Partner

Note: Due to confidentiality, only some of the partners are disclosed

國家太空中心 **Taiwan Space Agency**

經 濟 部 產業發展署 Industrial Development Administration, MOEA

Institutional Investors

CONFIDENTIAL - Do not duplicate or distribute without written permission from TRON FUTURE TECH INC.

T.Meta[™] : Software of The Anti-Drone System

T.MetaTM monitors every movement of small RCS (> 0.01m²) flying objects. Optimal tracking and scheduling algorithms enhance surveillance quality, and the intuitive and smooth UI experience will help you easily perform monitoring tasks with less training.

CONFIDENTIAL – Do not duplicate or distribute without written permission from TRON FUTURE TECH INC.

Total Solution for Anti-Drone

T.Sensor[®]

Active Electronically Scanned Array (AESA) RF detector

- 3D Location Method
- Azimuth Coverage
- Elevation Detection

AOA + Triangulation ±60° ±60°

400 MHz ~ 6 GHz

±60°

T.Jammer[®]

Active Electronically Scanned Array (AESA) Jammer

- Operating Frequency
- Azimuth Beamforming Coverage

±25°

• Elevation Beamforming Coverage

T.Interceptor[®]

Dual Seekers: AESA radar seeker + optical camera seeker Z

• Velocity > 60 m/s Interceptor turns back after the attack Reusable

Anti-Drone System Communication

AI drone defense X LEO SatCom

Drone defense tower provides regional private 5G coverage through a 5G small cell, with secure LEO satellite backhaul through T.SpaceRouter™ to provide necessary communication resilience in wartime. Legacy Mil-Com equipment can also be supported for custom compatibility.

T.SpaceHub[®] : SatCom Overall

T.SpaceHub[®] Mini

(Prototype) 2019/05 Contracted 2020/09 Deliver

T.SpaceHub[®] Micro (FM)

2021/11 Contracted 2023/11 Launch

T.SpaceHub[®] Mini (EM)

2021/06 Contracted 2022/09 Deliver

T.SpaceHub[®] B5G

(Prototype) 2023/07 Contracted 2024 Q4 Deliver

T.SpaceHub[®] Mini (EQM) 2021/06 Contracted 2024/11 Deliver

T.SpaceHub[®] Micro 2.0 (FM) 2023/09 Contracted 2025 Q2 Launch

T.SpaceHub[®] : SatCom Technology

Project	Frequency	Array Size	Data Rate	Polarization	Features
T.SpaceHub® Mini	X-band (Downlink)	144	800Mbps	RHCP	CCSDS Compliant Self-Developed Power Amplifier Redundancy Implementations
T.SpaceHub [®] Micro 1.0	Ka-band (Uplink) K-band (Downlink)	256 (Uplink) 64 (Downlink)	40Mbps	RHCP	Experimental payload for a 6U satellite
T.SpaceHub [®] B5G	Ka-band (Uplink) K-band (Downlink)	Scalable Array 1024 (Uplink) 1024 (Downlink)	2160Mbps	RHCP, LHCP	DVB-S2/DVB-S2X Compliant Self-Developed Beamformer IC Redundancy Implementations Multi-Beam Support
T.SpaceHub [®] Micro 2.0	Ka-band (Uplink) K-band (Downlink)	1024 (Uplink) 512 (Downlink)	2160Mbps	RHCP, LHCP	DVB-S2/DVB-S2X Compliant Communication Payload for 8U satellite Multi-User Support

SatCom Automotive User Terminal : T.SpaceRouter[®]

	1024 Elements each TX/RX	2048 Elements each TX/RX		
MECHANICAL & POWER				
Weight	5 kg	10 kg		
Dimension (LxWxH)	60cm x 30cm x 3.5cm	60cm x 60cm x 3.5cm		
Power Consumption	250 W	500 W		
TRACKING				
Beam Switching Time	< 10 ms			
Scanning angles	Azimuth 360°; Elevation > +30°			
Beam pointing accuracy	0.3°			
Modulation (Configurable)	16APSK / QPSK / BPSK			
ANTENNA				
Туре	Electronically Scanned Array			
Ka Band	RX 17.8 ~ 20.2 GHz ; TX 27.5 ~ 30 GHz			
Polarization	RHCP / LHCP			
Instantaneous bandwidth	250 MHz			
EIRP	> 36 dBW	> 40 dBW		
Antenna gain	> 30 dBi			

Satellite Synthetic Aperture Radar : T.SAR[™]

T.SAR[™] by Tron Future Tech

Achieving German SAR spec. at 20% total weight

HRWS SAR Satellite Launch in 2027 by TASA (FS-9)

SAR from German

Orbit	SSO (561km)		
Design life	3 years		
Frequency	X-band (9.65 GHz)		
Weight	240 kg (3 Panels)		
Dimension (L x W x H)	3.75 m x 1m x 0.1m		
Power Consumption	2800 W		
Peak Radiated Power	1875 W		
Power Input (DC)	28 V		
Operation modes Resolution	Stripmap : 3m Spotlight : 1m ScanSAR : 10-30m		
Image acquisition time	6 mins		
Command link between Payload and Bus	U-ART		
Data link between Payload and Bus	16Gbps SerDes		
TRL	5		

LEO Communication Goal

Channel model validation

Overall communication stack validation at tens of Mbps

Satellite search and tracking performance

Full Stack loopback testing (L1, L2, L3)

T.SpaceRouter[®]

Index

CONFIDENTIAL - Do not duplicate or distribute without written permission from TRON FUTURE TECH INC.

Relevant Track Records

AI Swarm Defense Systems

(Q3 2023)

National Space Program High Speed SatCom Payload

FormoSat 8-10 (2023-)

National Space Program Satellite Synthetic Aperture Radar

FormoSat 9 (2026-)

Automotive SatCom UT

Partially funded by IDA, MOEA. Target Customer: MIH/Toyota/Sony

Portable Drone Detection Radar

TRON FUTURE 創 未 來 科 技

CONFIDENTIAL - Do not duplicate or distribute without written permission from TRON FUTURE TECH INC